GEMC  1.8
Geant4 Monte-Carlo Framework
IC_hitprocess.cc
Go to the documentation of this file.
1 // %%%%%%%%%%
2 // G4 headers
3 // %%%%%%%%%%
4 #include "G4UnitsTable.hh"
5 #include "G4Poisson.hh"
6 #include "Randomize.hh"
7 
8 // %%%%%%%%%%%%%
9 // gemc headers
10 // %%%%%%%%%%%%%
11 #include "IC_hitprocess.h"
12 
14 {
15  PH_output out;
16  out.identity = aHit->GetId();
17  HCname = "IC Hit Process";
18 
19  // %%%%%%%%%%%%%%%%%%%
20  // Raw hit information
21  // %%%%%%%%%%%%%%%%%%%
22  int nsteps = aHit->GetPos().size();
23 
24  // Get Total Energy deposited
25  double Etot = 0;
26  vector<G4double> Edep = aHit->GetEdep();
27  for(int s=0; s<nsteps; s++) Etot = Etot + Edep[s];
28 
29  // average global, local positions of the hit
30  double x, y, z;
31  double lx, ly, lz;
32  x = y = z = lx = ly = lz = 0;
33  vector<G4ThreeVector> pos = aHit->GetPos();
34  vector<G4ThreeVector> Lpos = aHit->GetLPos();
35 
36  if(Etot>0)
37  for(int s=0; s<nsteps; s++)
38  {
39  x = x + pos[s].x()*Edep[s]/Etot;
40  y = y + pos[s].y()*Edep[s]/Etot;
41  z = z + pos[s].z()*Edep[s]/Etot;
42  lx = lx + Lpos[s].x()*Edep[s]/Etot;
43  ly = ly + Lpos[s].y()*Edep[s]/Etot;
44  lz = lz + Lpos[s].z()*Edep[s]/Etot;
45  }
46  else
47  {
48  x = pos[0].x();
49  y = pos[0].y();
50  z = pos[0].z();
51  lx = Lpos[0].x();
52  ly = Lpos[0].y();
53  lz = Lpos[0].z();
54  }
55 
56  // average time
57  double time = 0;
58  vector<G4double> times = aHit->GetTime();
59  for(int s=0; s<nsteps; s++) time = time + times[s]/nsteps;
60 
61  // Energy of the track
62  double Ene = aHit->GetE();
63 
64  out.raws.push_back(Etot);
65  out.raws.push_back(x);
66  out.raws.push_back(y);
67  out.raws.push_back(z);
68  out.raws.push_back(lx);
69  out.raws.push_back(ly);
70  out.raws.push_back(lz);
71  out.raws.push_back(time);
72  out.raws.push_back((double) aHit->GetPID());
73  out.raws.push_back(aHit->GetVert().getX());
74  out.raws.push_back(aHit->GetVert().getY());
75  out.raws.push_back(aHit->GetVert().getZ());
76  out.raws.push_back(Ene);
77  out.raws.push_back((double) aHit->GetmPID());
78  out.raws.push_back(aHit->GetmVert().getX());
79  out.raws.push_back(aHit->GetmVert().getY());
80  out.raws.push_back(aHit->GetmVert().getZ());
81 
82  // %%%%%%%%%%%%
83  // Digitization
84  // %%%%%%%%%%%%
85 
86  // R.De Vita (April 2009)
87 
88  // relevant parameter for digitization (in the future should be read from database)
89  double tdc_time_to_channel=20; // conversion factor from time(ns) to TDC channels)
90  double tdc_max=4095; // TDC range
91  double adc_charge_tochannel=20; // conversion factor from charge(pC) to ADC channels
92  double PbWO4_light_yield =120/MeV; // Lead Tungsten Light Yield (PAD have similar QE for
93  // fast component, lambda=420nm-ly=120ph/MeV, and slow component,
94  // lambda=560nm-ly=20ph/MeV, taking fast component only)
95  double APD_qe = 0.75; // APD Quantum Efficiency (Hamamatsu S8664-55)
96  double APD_size = 25*mm*mm; // APD size ( 5 mm x 5 mm)
97  double APD_gain = 250; // based on IC note
98  double APD_noise = 0.006; // relative noise based on a Voltage and Temperature stability of 30 mV (10%/V) and 0.1 C (-5%/C)
99  double AMP_input_noise = 4500; // preamplifier input noise in number of electrons
100  double AMP_gain = 2500; // preamplifier gain = 5V/pC x 25 ns (tipical signal duration)
101  double light_speed =15;
102 
103  // Get the crystal length: in the IC crystal are trapezoid (TRD) and the half-length is the 5th element
104  double length = 2 * aHit->GetDetector().dimensions[4];
105  // Get the crystal width (rear face): in the IC crystal are trapezoid (TRD) and the half-length is the 2th element
106  double width = 2 * aHit->GetDetector().dimensions[1];
107 
108  // use Crystal ID to define IDX and IDY
109  int IDX = out.identity[0].id;
110  int IDY = out.identity[1].id;
111 
112  // initialize ADC and TDC
113  int ADC = 0;
114  int TDC = 8192;
115 
116 
117  double Tmin = 99999.;
118  if(Etot>0)
119  {
120  for(int s=0; s<nsteps; s++)
121  {
122  double dRight = length/2 - Lpos[s].z(); // distance along z between the hit position and the end of the crystal
123  double timeR = times[s] + dRight/cm/light_speed; // arrival time of the signal at the end of the crystal (speed of light in the crystal=15 cm/ns)
124  if(Edep[s]>1*MeV) Tmin=min(Tmin,timeR); // signal time is set to first hit time with energy above 1 MeV
125  }
126  TDC=int(Tmin*tdc_time_to_channel);
127  if(TDC>tdc_max) TDC=(int)tdc_max;
128  // calculate number of photoelectrons detected by the APD considering the light yield, the q.e., and the size of the sensor
129  double npe=G4Poisson(Etot*PbWO4_light_yield/2*APD_qe*APD_size/width/width);
130  // calculating APD output charge (in number of electrons) and adding noise
131  double nel=npe*APD_gain;
132  nel=nel*G4RandGauss::shoot(1.,APD_noise);
133  if(nel<0) nel=0;
134  // adding preamplifier input noise
135  nel=nel+AMP_input_noise*G4RandGauss::shoot(0.,1.);
136  if(nel<0) nel=0;
137  // converting to charge (in picoCoulomb)
138  double crg=nel*AMP_gain*1.6e-7;
139  // converting to ADC channels
140  ADC= (int) (crg*adc_charge_tochannel);
141 
142  }
143  out.dgtz.push_back(IDX);
144  out.dgtz.push_back(IDY);
145  out.dgtz.push_back(ADC);
146  out.dgtz.push_back(TDC);
147 
148 
149  return out;
150 }
151 
152 vector<identifier> IC_HitProcess :: ProcessID(vector<identifier> id, G4Step* aStep, detector Detector, gemc_opts Opt)
153 {
154  id[id.size()-1].id_sharing = 1;
155  return id;
156 }
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
G4ThreeVector GetVert()
Definition: MHit.h:72
vector< double > raws
Raw information.
Definition: MPHBaseClass.h:26
int GetPID()
Definition: MHit.h:107
int GetmPID()
Definition: MHit.h:122
vector< identifier > GetId()
Definition: MHit.h:96
string HCname
Hit Collection name.
Definition: MPHBaseClass.h:41
vector< identifier > ProcessID(vector< identifier >, G4Step *, detector, gemc_opts)
Method to calculate new identifier.
G4ThreeVector GetmVert()
Definition: MHit.h:127
vector< identifier > identity
Identifier.
Definition: MPHBaseClass.h:28
PH_output ProcessHit(MHit *, gemc_opts)
Method to process the hit.
vector< G4ThreeVector > GetLPos()
Definition: MHit.h:69
double GetE()
Definition: MHit.h:89
vector< G4ThreeVector > GetPos()
Definition: MHit.h:65
Definition: MHit.h:29
vector< double > GetTime()
Definition: MHit.h:82
vector< double > dimensions
vector of dimensions. Size, units depends on solid type
Definition: detector.h:63
vector< double > GetEdep()
Definition: MHit.h:76
detector GetDetector()
Definition: MHit.h:101
vector< int > dgtz
Digitized information.
Definition: MPHBaseClass.h:27